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Abstract. Given a non-empty compact metric space X and a continuous
function f : X → X, we study the dynamics of the induced maps on the hy-
perspace of non-empty compact subsets of X and on various other invariant
subspaces thereof, in particular symmetric products. We show how some im-
portant dynamical properties transfer across induced systems. These amongst
others include, chain transitivity, chain (weakly) mixing, chain recurrence, ex-
actness by chains. From our main theorem we derive an ε-chain version of
Furstenberg’s celebrated 2 implies n Theorem. We also show the implications
our results have for dynamics on continua.

1. Introduction

Given a non-empty compact metric space X, the study of the dynamics given by
a continuous map f : X → X can be approached from many different angles. The
most direct strategy, by studying individual orbits, can indeed be very fruitful, and
most of the topological dynamics has built upon this premise.

In reality, however, one rarely knows precisely the state of a physical system.
The observables usually come with some uncertainty and it therefore makes sense
to study probability distributions on X and how they evolve. As Bauer et al. nicely
put it in their paper [3] from 1975:

“The elements of M(K) can be viewed as statistical states, repre-
senting imperfect knowledge of the system. The elements of X are
imbedded in M(X) as the pure states.”

To a topologist, it seems natural to dismiss probabilities and study how the support
of a probability distribution evolve over time, i.e. to study the induced dynamics on
2X , the hyperspace of compact subsets of X. In fact, Bauer et al. initiate this line
of research in that very paper. This made even more sense with the development
of computers, as in order to keep track of the precision, one usually computes the
orbit of an interval representing lower and upper bounds for the initial state. It has
been argued [6] that, from a computational and domain theoretic point of view,
this is the natural approach to dynamical systems.

Related to this is also the fact that we are studying chain versions of well-
known topological properties. Recall that a finite precision numerical simulation of
some dynamics inevitably produces ε-pseudo-orbits, where ε is determined by the
precision of the machine. It is therefore natural to study, say, chain transitivity, as
a chain transitive system, when simulated on a finite precision machine, may well
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exhibit the same behaviour as a truly transitive system. What is worse, this cannot
be improved by increasing the precision of the machine, as long as it is kept finite.

In this paper we show that for a chain transitive map f either majority of the
induced dynamics on the hyperspaces are chain transitive, or none of them is. This
is the content of Theorem 3 ((A) and (D) parts) and witnesses that the hyper-
spaces under consideration, symmetric and Cartesian products, are rigidly embed-
ded within 2X . Recall that Furstenberg’s celebrated 2 implies n Theorem, see [7,
Proposition II.3], establishes an analogous result for the classic version of transi-
tivity and the implication (D1) =⇒ (D2) in our Theorem can thus be seen as an
ε-chain version of Furstenberg’s result. This is extracted in Corollary 4.

Parts (E) and (F) establish the equivalence of chain transitivity of the hyper-
spaces to other properties of interest, chain (weakly) mixing, exactness by chains,
total chain transitivity. This is in contrast to the classic versions of these properties
as those are distinguishable (see Examples 1 and 2).

Property (C) bears resemblance to Šarkovs′kĭı’s weak incompressibility which,
as was demonstrated by Barwell et al. in [2], has everything to do with chain
transitivity, hence this connection should not take us by surprise. Finally, part
(B) characterises chain transitivity in hyperspaces by imposing a combinatorial
restriction on pseudo-orbits.

Not all results presented here are completely new. In [22] Yang proves the
sequence of equivalences (B1) ⇐⇒ (E1) ⇐⇒ (F1) ⇐⇒ (F2). We were informed
about this after independently proving our result. Since Yang’s proof appears only
in Chinese language, we decided to include our own proof. In [19] Richeson et
al. prove equivalence (F1) ⇐⇒ (F2), and they also show that these are equivalent
to chain transitivity and chain recurrence of f for the case of continua. In [11]
Khan et al. prove that chain transitivity and chain recurrence of 2f implies the
same properties for f , that (F2) is equivalent to 2f being chain mixing, and that
for continua all the implications go in both directions. This being said, to the
best of our knowledge, this is the first comprehensive account of the topic of chain
transitivity in hyperspaces.

We do not however obtain a satisfying characterisation of chain transitivity for
the hyperspace of subcontinua of X, and a recent paper [16] by Matviichuk et al.
is a step forward in this direction for the case of interval maps.

The related work of other authors investigating different aspects of dynamics
in hyperspaces includes: the previously mentioned paper [3] where Bauer et al.
prove that f is weakly/mild/strong mixing if and only if the induced map on 2X
is weakly/mild/strong mixing respectively; a characterization of the transitivity of
the induced map on 2X in [4] by Banks, in [18] by Peris, and in [1] by Acosta et al.;
a study of entropy by Kwietniak et al. in [13]; shadowing property by Wu et al. in
[21]; periodicity, recurrence, quasi-periodicity, (non-)wandering points, shadowing,
exactness in hyperspaces by Gómez et al. in [8]; and very recently disjointness by
Li et al. in [14].

The rest of this paper is organised as follows. In Section 2 we introduce our
notation, the main theorem is stated in Section 3, and its proof occupies Section 4.
The application to the continua is left for Section 5 where we also establish another
interesting dichotomy, namely Theorem 15 stating that a space admitting weakly
chain mixing must be either connected, or have infinitely many components.

2. Preliminaries

Throughout the paper, unless stated otherwise, X denotes a non-empty compact
metric space and f : X → X a continuous map on it. We usually fix some metric
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d on X to work with. This however is not a restriction as most of the interesting
dynamical properties are of topological nature and hence independent of the choice
of the metric. By

2X = {A ⊆ X : A is non-empty and closed}

we denote the hyperspace of closed non-empty subsets of X. For any r > 0 and any
A ∈ 2X , the open ball about A of radius r is given by

NX(A, r) = {x ∈ X : d(x,A) < r} .

For the special case when A = {x} we will denote this by NX(x, r) instead of
NX ({x}, r). The closure in X of a subset A ⊆ X is denoted by ClX(A). If it is
clear which space we are considering, we just denote it as Cl(A).

The space 2X comes equipped with a natural metric H : 2X ×2X → [0,∞) given
by

H(A,B) = inf{ε > 0: A ⊆ NX(B, ε) and B ⊆ NX(A, ε)},
which is often called the Hausdorff metric. It turns out that the topology on 2X
induced by this metric is compact and coincides with the abstractly defined Vietoris’
topology given by the basis

B = {〈U1, U2, . . . , Um〉 : Ui is open for each i ∈ {1, 2, ...,m},m ∈ N},

where

〈U1, U2, ..., Um〉 =
{
A ∈ 2X : A ⊆

m⋃
i=1

Ui and A ∩ Ui 6= ∅, i ∈ {1, 2, ...,m}
}
.

For the proof of these and related results see [15] and [17, Theorem 0.11 and 0.13].

A natural way to define the induced map 2f : 2X → 2X is by the formula

2f (A) = f(A) = {f(x) : x ∈ A}, for A ∈ 2X .

It is immediate that all of the following
• C(X) = {A ∈ 2X : A is connected} — the hyperspace of subcontinua of X,
• Cn(X) = {A ∈ 2X : A has at most n components},
• Fn(X) = {A ∈ 2X : A has at most n points} — the n-fold symmetric prod-

uct of X,
• F (X) =

⋃∞
n=1 Fn(X) — the collection of all finite subsets of X

are 2f -invariant closed subspaces of 2X , and it is natural to study restrictions (in
both the domain and the co-domain) of 2f to these subspaces for which we introduce
the following notation

• 2f |C(X) = C(f),
• 2f |Cn(X) = Cn(f),
• 2f |Fn(X) = fn,
• 2f |F (X) = f<ω.

Occasionally we will write just f for any of the above maps as this does not lead to
any confusion, and is useful to keep the notation simple, especially when we need
to refer to the kth iterate of the map 2f which we simply denote by fk.

Remark 1. When using the Vietoris’ topology in a symmetric product, we will
denote by 〈U1, U2, ..., Um〉n the intersection of a basic open set 〈U1, U2, ..., Um〉 with
Fn(X)

〈U1, U2, ..., Um〉n = 〈U1, U2, ..., Um〉 ∩ Fn(X).
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The usual n-fold Cartesian product will also be of interest as the n-fold symmetric
product can be seen as a quotient of this space. Somewhat unconventionally we
denote the product space X ×X × · · · ×X︸ ︷︷ ︸

n−times

by X(n) and the induced map by f (n).

This is not to be confused with fn which is simply the nth iterate of f .

3. Main theorem

In order to state our main result we need to recall the definitions of chain versions
of some well-studied dynamical properties.

Given a δ > 0, a δ-pseudo orbit is a finite or infinite sequence of points 〈x0, x1, . . .〉
such that d (f(xi), xi+1) < δ. If we have a finite δ-pseudo orbit: 〈x0, x1, . . . , xn〉,
we will call it δ-chain and we say that it has length n. A subset Λ of X is internally
chain transitive (or alternatively f is internally chain transitive on Λ) if for every
pair of points x, y in Λ and every δ > 0 there is a δ-chain 〈x = x0, x1, . . . , xm = y〉 ⊆
Λ between x and y. In the special case when Λ = X, we say that f (or X) is chain
transitive (CT).

If a, b, c ∈ X and Γ1,Γ2 are two δ-chains in X, Γ1 =
〈
a = l10, l

1
1, . . . , l

1
k1

= b
〉

and
Γ2 =

〈
b = l20, l

2
1, . . . , l

2
k2

= c
〉
, respectively, then Γ1 + Γ2 denotes the concatenation

of Γ1 with Γ2,

Γ1 + Γ2 =
〈
a = l10, l

1
1, . . . , l

1
k1

= b = l20, l
2
1, . . . , l

2
k2

= c
〉
.

Note that the length of Γ1 + Γ2 is the sum of lengths of Γ1 and Γ2. If Γ is a δ-chain
with the same starting and ending point, Γ = 〈a = l0, l1, . . . , lk = a〉, and m ≥ 1,
mΓ denotes Γ + Γ + · · ·+ Γ︸ ︷︷ ︸

m−times

.

Definition 1. We say that f is chain weakly mixing (or weakly mixing by chains)
if the function f (2) : X(2) → X(2) is chain transitive; f is totally chain transitive
(or totally transitive by chains) if for every n ≥ 1, the function fn : X → X is chain
transitive; f is exact by chains if for every ε > 0 and every non-empty open subset
U of X, there is a positive integer nε ≥ 1 such that for every x ∈ X there exists
u ∈ U and an ε-chain 〈u = a0, a1, . . . , anε

= x〉 from u to x with length exactly nε.

Recall that a map f : X → X is called exact if for every non-empty open set
U ⊆ X, there exists a positive integer m such that fm(U) = X, and the map f is
called weakly mixing if f ×f : X×X → X×X is transitive. It is known that every
exact function is weakly mixing ([18, Theorem 2.1] and [9, Lemma 5]), and every
weakly mixing function is totally transitive ([4, Theorem 1]). It turns out that the
chain versions of these properties are in fact equivalent (see Theorem 3). This is
not true for the classic notions as the two examples below show.

Example 1. Let fθ : S1 → S1 be an irrational rotation on the unit circle. Then fθ
is totally transitive. Let U and V be two sufficiently small open arcs, diametrically
opposed, then for every n, fnθ (U) ∩ fnθ (V ) = ∅, which implies that [(fθ × fθ)n(U ×
V )] ∩ (U × U) = ∅. Therefore, fθ is not weakly mixing.

Example 2. Let I = [0, 1] be the unit interval and let T : I → I be the tent map
given by

T (x) =
{

2x if x ∈ [0, 1
2 ]

2− 2x if x ∈ [ 1
2 , 1]

Let X∞ = lim
←
{T, I} and let σT : X∞ → X∞ be the map given by

σT (x1, x2, . . . ) = (T (x1), x1, x2, . . . ).
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Since T is exact, then T is weakly mixing. By [5, Theorem 7], σT is weakly mixing
but it can not be exact because it is an homeomorphism.

Definition 2. We say that f is chain mixing (or mixing by chains) if for every ε > 0
there exists a positive integer N such that for all n ≥ N and for any pair x, y ∈ X,
there exists an ε-chain from x to y of length n, 〈x = x0, x1, x2, . . . , xn = y〉; f is
chain recurrent if for every x ∈ X and every ε > 0, there is an ε-chain from x to
itself.

Theorem 3 (Main theorem). Let X be a compact metric space and let f : X → X
be a continuous function. Then the following are equivalent:

(A1) f<ω is CT,
(A2) 2f is CT,
(A3) fn is CT for some n ≥ 2,
(A4) fn is CT for any n ≥ 1,
(B1) f is CT and there exist z ∈ X such that for any δ > 0 there are two δ-chains

from z to itself with co-prime lengths,
(B2) f is CT and for any z ∈ X and any δ > 0 there are two δ-chains from z to

itself with co-prime lengths,
(C) f is CT and for every pair of non-empty disjoint open proper subsets of X,

U and V , we have either ClX (f(U)) * V or ClX (f(V )) * U ,
(D1) f (n) is CT for some n ≥ 2,
(D2) f (n) is CT for any n ≥ 1,
(E1) f is chain weakly mixing,
(E2) f is exact by chains,
(E3) for every z ∈ X and each ε > 0, there is a positive integer nε ≥ 1 such that

for each x ∈ X \ {z}, there is an ε-chain of length nε from z to x,
(F1) f is totally chain transitive,
(F2) f is chain mixing.

Furthermore, if any, and hence all of the properties above hold then f is CT.

The implication (D1) =⇒ (D2) in the previous theorem can be interpreted as
a chain version of the Theorem of Furstenberg [7, Proposition II.3].

Corollary 4. If f is chain weakly mixing, then f (n) : X(n) → X(n) is chain tran-
sitive for every n ≥ 1.

We also get

Corollary 5. If a chain transitive map f has a fixed point then all of the statements
in Theorem 3 hold.

This is not a necessary condition however. One can easily see this by considering
an irrational rotation of the circle which clearly is chain transitive, and hence by
Corollary 13 below satisfies all the other conditions in Theorem 3, but has no
periodic points whatsoever.

4. The proof of the main theorem

Lemma 6 ([12], Proposition 2.6). Let X be a compact metric space and let f : X →
X be a continuous function. If f is chain transitive, then f is onto.

Proof. Let y ∈ X and fix another point x ∈ X. Since f is chain transitive, then for
every positive integer j, there is a 1

j -chain from x to y. This implies that there exists

a sequence {xjn(j)−1}
∞
j=1 such that d

(
f
(
xjn(j)−1

)
, y
)
< 1

j . Since X is compact, we
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may assume that for some x0 ∈ X, xjn(j)−1 → x0 as j →∞. Since f is continuous
f(x0) = y. Thus, f is onto. �

The following proposition proves the last claim of Theorem 3. It actually shows
a bit more, and is important in its own right. Example 3 below it shows that the
converse to the proposition does not hold in general. A partial converse however,
in case X is continuum, holds and will be given in Theorem 13.

Proposition 7. Let X be a compact metric space and let f : X → X be a contin-
uous function. If C(f), Cn(f), fn, f<ω or 2f , for any n, is chain transitive, then
f is chain transitive.

Proof. Let δ > 0, let f̄ : X → X be the induced map, where X ∈ {C(X), Cn(X),
Fn(X), F (X), 2X}, and assume that f̄ is chain transitive. Let x, y ∈ X. Since
{x}, {y} ∈ X , there is a δ-chain in X , 〈{x} = A0, A1, A2, . . . , Ak = {y}〉 with k ≥ 1.
Now, since H(f̄({x}), A1) < δ, {f(x)} ⊆ NX(A1, δ), thus, there is a1 ∈ A1 such
that d(f(x), a1) < δ. Since H(f̄(A1), A2) < δ, then f̄(A1) ⊆ NX(A2, δ), there is
a2 ∈ A2 for which d(f(a1), a2) < δ. Following this process there is ai+1 ∈ Ai+1
such that d(f(ai), ai+1) < δ. Thus, the sequence 〈x = a0, a1, a2, . . . , ak = y〉 is a
δ-chain from x to y in X. �

Example 3. Let X = {a, b} and let f : X → X given by f(a) = b and f(b) = a. It
is clear that f is transitive, which implies that f is chain transitive. Nevertheless,
2f is not chain transitive. If we take δ = d(a,b)

2 , there is no a δ-chain from {a} to
{a, b}.

4.1. Equivalence of (A1)− (A4). We first prove an auxiliary lemma.

Lemma 8. Let X be a compact metric space, let f : X → X be a continuous
function and let Y be a dense and invariant subset of X. Then f is chain transitive
if and only if f |Y is chain transitive.

Proof. Assume that f is chain transitive, let a, b ∈ Y and let ε > 0. Since
X is compact, there is δ > 0 such that 0 < δ < ε

2 and if d(s, t) < δ, then
d(f(s), f(t)) < ε

2 for every s, t ∈ X. By hypothesis, there is a δ
2 -chain in X

from a to b, 〈a = z0, z1, z2, . . . , zk = b〉, with k ≥ 1. Since Y is dense in X, we have
that, for each i ∈ {1, 2, . . . , k − 1}, there is ti+1 ∈ NX

(
zi+1,

δ
2
)
∩ Y . Thus,

d(f(ti), ti+1) ≤ d(f(ti), f(zi))+d(f(zi), zi+1)+d(zi+1, ti+1) < ε

2+ δ

2+ δ

2 = ε

2+δ < ε.

Therefore, the sequence 〈a, t1, t2, . . . , tk−1, b〉 is an ε-chain in Y .
Now assume that f |Y is chain transitive, let x, y ∈ X, let y′ ∈ f−1(y) and let

ε > 0. Also, let δ > 0 such that if d(a, b) < δ, then d(f(a), f(b)) < ε. Since
Y is dense in X, there are z0, z1 ∈ Y such that d(z0, f(x)) < ε and d(z1, y

′) <
δ. This implies that d(f(z1), y) < ε. By hypothesis, there is an ε-chain in Y ,
〈z0 = a0, a1, a2, . . . , ak = z1〉, with k ≥ 1. Thus, the sequence 〈x, z0 = a0, a1, . . . ,
ak = z1, y〉 is an ε-chain from x to y in X. �

Recall that for every A ∈ 2X and any ε > 0, there is a finite set K ∈ F (X) ⊆ 2X
such that H(A,K) < ε. This along with Lemma 8 gives (A1) ⇐⇒ (A2). The
implication (A4) =⇒ (A1) is also immediate as for two sets A,B ∈ F (X) one can
always find n ∈ N such that both A and B lie in Fn(X). The chain in between
provided by fn also works as a chain in F (X).

We now prove (A2) =⇒ (A3), more precisely that (A2) implies chain transitiv-
ity for f2. Assume that 2f is chain transitive. Let A = {x0, y0}, B = {x, y}
be two points in F2(X), let z ∈ X, and let δ > 0. Since 2f is chain tran-
sitive, then there is a δ-chain Γ1 = 〈A = A0, A1, A2, . . . , An = {z}〉 from A to
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{z} in 2X . Since H (f(Ai), Ai+1) < δ, there are points xi, yi ∈ Ai such that
d (f(xi), xi+1) < δ and d (f(yi), yi+1) < δ, for every i ∈ {0, 1, 2, . . . , n − 1}. Let
A∗i = {xi, yi}. Then Γ∗1 = 〈A∗ = A∗0, A

∗
1, A

∗
2, . . . , A

∗
n = {z}〉 is a δ-chain from

A to {z} in F2(X). Now, since 2f is chain transitive, then there is a δ-chain
Γ2 = 〈{z} = B0, B1, B2, . . . , Bl = B〉 from {z} to B. Let us rename the points in
B = {x, y} to B = {xl, yl}. Since H (f(Bl−1), Bl) < δ, then for xl ∈ Bl, there is
xl−1 ∈ Bl−1 such that d (f(xl−1), xl) < δ, and for yl ∈ Bl, there is yl−1 ∈ Bl−1 such
that d (f(yl−1), yl) < δ. Continuing this process we obtain the sets B∗i = {xi, yi}
such that d (f(xi−1), xi) < δ and d (f(yi−1), yi) < δ for every i ∈ {1, 2, . . . , l}.
Thus, Γ∗2 = 〈B∗0 = {z}, B∗1 , B∗2 , . . . , B∗l = B〉 is a δ-chain from {z} to B in F2(X).
Therefore, the concatenation of Γ∗1 + Γ∗2 is a δ-chain from A to B in F2(X).

To close the circle of equivalences (A1)−(A4) it remains to prove (A3) =⇒ (A4).
First note that the reasoning above, deriving chain transitivity of f2 from (A2),
mutatis mutandis, proves that (A3) also implies chain transitivity of f2. It will
therefore suffice to show that given a fixed n ≥ 2, chain transitivity of fn implies
chain transitivity of fn+1. To this end let A and B be points in Fn+1(X) and
let δ > 0. Without lost of generality we may assume that A = {a1, a2, . . . , an+1}
and B = {b1, b2, . . . , bn+1}. Let A′ = {a1, a2, . . . , an}, B′ = {b1, b2, . . . , bn}. A′′ =
{a1, a2, . . . , an−1}, B′′ = {b1, b2, . . . , bn−1}. Since fn is chain transitive, there are
δ-chains:

〈A′ = A0, A1, A2, . . . , Ar = A′′〉 of length r

and
〈B′′ = B0, B1, B2, . . . , Bt = B′〉 of length t

Then

Γ1 =
〈
A0 ∪ {an+1}, A1 ∪ {f(an+1)}, A2 ∪ {f2(an+1)}, . . . , Ar ∪ {fr(an+1)}

〉
is a δ-chain from A to A′′ ∪ {fr(an+1)}. Let w ∈ f−t(bn+1), then

Γ2 =
〈
B0 ∪ {w}, B1 ∪ {f(w)}, B2 ∪ {f2(w)}, . . . , Bt ∪ {f t(w)}

〉
is a δ-chain from B′′ ∪ {w} to B. Since fn(X) is chain transitive, then there is a
δ-chain Γ3 form A′′∪{fr(an+1)} to B′′∪{w}. Thus, the concatenation Γ1 +Γ3 +Γ2
is a δ-chain from A to B in Fn+1(X).

4.2. Equivalence of (B1) − (B2). We now proceed to show (A4) =⇒ (B2).
We assume, in particular, that f2 is chain transitive. Let z ∈ X and δ > 0 be
arbitrary. Since f2 is chain transitive then there exists a δ-chain from {z, f(z)} to
{z} in F2(X). If this δ-chain has length r, then this implies that there are two
different δ-chains from z to z of lengths r and r + 1 as desired. Furthermore, by
Proposition 7 f is CT.

Clearly (B2) implies (B1) and hence it will suffice to show that (B1) implies,
say, (A3). To that end let A = {a1, a2} and B = {b1, b2} be two points in F2(X)
and let δ > 0. In order to show chain transitivity of f2, we will construct a δ-chain
from A to B in F2(X). For i ∈ {1, 2} let αi be the shortest δ-chain from ai to z,
let βi be the shortest δ-chain from z to bi, and let γi be a δ-chain from z to z of
length pi. Also, let us assume that the length of αi is ki and the length of βi is mi.
In order to have a δ-chain from A to B in F2(X), we need to find positive numbers
r and t satisfying: k1 + r · p1 + m1 = k2 + t · p2 + m2. Without loss of generality,
we may assume that k1 +m1 > k2 +m2. Thus, the numbers r and t should satisfy:
k1 + m1 − (k2 + m2) = t · p2 − r · p1. Since (p1, p2) = 1, then it is always possible
to find the numbers r and t (see Figure 1).
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z

l(γ1) = p1

l(γ2) = p2

b1l(β1) = m1

b2l(β2) = m2

a1 l(α1) = k1

a2 l(α2) = k2

Figure 1.

4.3. Equivalence of (C). For this part of the proof we will need to recall the
notion of weak incompressibility introduced by Šarkovs′kĭı i in [20].

A subset Λ of X is weakly incompressible if M ∩ ClX (f(Λ \M)) 6= ∅ whenever
M is a non-empty, closed, proper subset of Λ. Clearly Λ is weakly incompressible if
and only if ClX (f(U))\ (Λ\U) 6= ∅ for any non-empty proper subset U of Λ which
is open in Λ. For example, every ω-limit set (see [2]) is weakly incompressible, in
particular, if Λ is a finite orbit, then Λ is weakly incompressible. In [2, Theorem
2.2] Barwell et al. prove that the notion of weak incompressibility coincides with
that of internal chain transitivity. In case Λ = X, we also say that the map f is
weakly incompressible, or equivalently, chain transitive. A close inspection of the
proof of Theorem 2.2 in [2] reveals that, due to compactness, it suffices to verify
weak incompressibility condition only on the elements of some basis for topology
on X.

Lemma 9. Let X be a compact metric space and let f : X → X be a continuous
function. Let B∗ a base for X and let B = B∗ \ {∅, X}. Then X is weakly
incompressible if and only if for every U ∈ B, ClX (f(U)) ∩X \ U 6= ∅.

We now proceed to prove (C) =⇒ (A3). First note that if for any non-empty
proper basic set 〈U, V 〉2 we have that ClF2(X) (f2 (〈U, V 〉2)) ∩ F2(X) \ 〈U, V 〉2 6= ∅,
then, by Lemma 9, F2(X) is weakly incompressible, and thus f2 is chain transitive
and (A3) holds. For this reason, in one direction, it suffices to prove that (C)
implies
ClF2(X) (f2 (〈U, V 〉2)) ∩ F2(X) \ 〈U, V 〉2 6= ∅, for any proper basic set 〈U, V 〉2 6= ∅.
To that end, let 〈U, V 〉2 be a non-empty proper basic set of F2(X). Assume first
that U ∩ V 6= ∅. Since f is chain transitive, ClX (f(U ∩ V )) ∩X \ U ∩ V 6= ∅. Let
x ∈ ClX (f(U ∩ V )) ∩ X \ U ∩ V . It is clear that {x} ∈ ClF2(X) (f2(〈U, V 〉2)) ∩
F2(X) \ 〈U, V 〉2.

Assume now that U ∩ V = ∅. Notice that U and V are non-empty proper
open subsets of X. Thus, we have ClX (f(U)) ∩ X \ U 6= ∅ and ClX (f(V )) ∩
X \ V 6= ∅. Let x ∈ ClX (f(U)) ∩ X \ U and y ∈ ClX (f(V )) ∩ X \ V . It is
easy to see that {x, y} ∈ ClF2(X) (f2 〈U, V 〉2). If x = y, then {x} /∈ 〈U, V 〉2, then
{x} ∈ ClF2(X) (f2 (〈U, V 〉2)) ∩ F2(X) \ 〈U, V 〉2. If x 6= y and {x, y} ∈ 〈U, V 〉2,
then x ∈ V and y ∈ U . Without loss of generality, assume that ClX (f(U)) *
V . Let z ∈ ClX (f(U)) \ V . Since y ∈ ClX (f(V )) \ V , we have that {z, y} ∈
ClF2(X) (f2(〈U, V 〉2)) and {z, y} /∈ 〈U, V 〉2. This proves that ClF2(X) (f2(〈U, V 〉2))∩
F2(X) \ 〈U, V 〉2 6= ∅.

For the converse we prove (B2) =⇒ (C). For the sake of contradiction, assume
that (C) does not hold. As we are assuming (B2), f must be CT, and hence
there exist two non-empty proper disjoint open subsets of X, U and V , such that
ClX (f(U)) ⊆ V and ClX (f(V )) ⊆ U . By regularity we can find a δ > 0 such that
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NX(f(U), δ) ⊆ V and NX(f(V ), δ) ⊆ U . Let z ∈ X be any point in U . By (B2)
we can find two δ-chains from z to itself of co-prime lengths. Note however that
any δ-chain starting in U must after one step end up in V , then after another again
in U etc. This shows that any δ-chain from z to itself must be of even length, a
contradiction.

4.4. Equivalence of (D1)-(D2). This easily follows from Proposition 11 which
will allow us to conclude (A3) ⇐⇒ (D1) and (A3) ⇐⇒ (D2). But first we need
a lemma.

Lemma 10. Let X be a compact metric space, let Y be a metric space and let
f : X → X, and g : Y → Y be continuous functions. Suppose that there exists
h : X → Y onto and continuous such that h ◦ f = g ◦ h. If f is chain transitive,
then g is chain transitive.

Proof. We will denote d1 and d2 to the metrics on X and Y , respectively. Let
y1, y2 ∈ Y and ε > 0. Since h is onto, there are x1 and x2 in X such that h(x1) = y1
and h(x2) = y2. Also, since X is compact, there is δ > 0 such that if d1(a, b) < δ,
then d2(h(a), h(b)) < ε, for all a, b ∈ X. By hypothesis, there is a δ-chain in X,
〈x1 = z0, z1, . . . , zr = x2〉, with r ≥ 1. Thus, for i ∈ {0, 1, . . . , r − 1}, we have
that d1 (f(zi), zi+1) < δ, then d2 (g (h(zi)) , h(zi+1)) = d2 (h (f(zi)) , h(zi+1)) < ε.
Hence, the sequence 〈y1 = h(z0), h(z1), . . . , h(zr) = y2〉 is an ε-chain in Y . �

Proposition 11. Let X be a compact metric space, let f : X → X be a continuous
function and let n ≥ 1. The following are equivalent:

(1) f (n) : X(n) → X(n) is chain transitive,
(2) fn : Fn(X)→ Fn(X) is chain transitive.

Proof. Let h : X(n) → Fn(X) given by: for each (x1, x2, . . . , xn) in X(n),
h ((x1, x2, . . . , xn)) = {x ∈ X : x = xi, for some i ∈ {1, 2, . . . , n}} .

It is not difficult to see that h is continuous. Also, if (x1, x2, . . . , xn) ∈ X(n), then

(h ◦ f (n)) ((x1, x2, . . . , xn)) = h ((f(x1), f(x2), . . . , f(xn))) =
{x ∈ X : x = f(xi), for some i ∈ {1, 2, . . . , n}} =
fn({x ∈ X : x = xi, for some i ∈ {1, 2, . . . , n}}) =

fn(h((x1, x2, . . . , xn))) = (fn ◦ h)((x1, x2, . . . , xn)).

Thus, by Lemma 10, we have that (1) implies (2).
To see that (2) implies (1), let (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ X(n) and let

ε > 0. Let z ∈ X, then h((x1, x2, . . . , xn)), h((y1, y2, . . . , yn)) and {z} are in Fn(X).
By hypothesis there are ε-chains in Fn(X) in the following way:

〈h((x1, x2, . . . , xn)) = A0, A1, . . . , Am1 = {z}〉 and
〈{z} = B0, B1, . . . , Bm2 = h((y1, y2, . . . , yn))〉 .

For each i ∈ {1, 2, . . . , n}, we have induced ε-chains in X,
〈
xi = ai0, a

i
1, . . . , a

i
m1

= z
〉

and
〈
z = bi0, b

i
1, . . . , b

i
m2

= yi
〉
, where aij ∈ Aj and bit ∈ Bt, for each j ∈ {0, 1, . . . ,m1}

and each t ∈ {0, 1, . . . ,m2}. Thus, the sequence
〈D0, D1, . . . , Dm1 , Dm1+1, . . . , Dm1+m2〉 ,

given by:

Di =
{

(a1
i , a

2
i , . . . , a

n
i ) if i ∈ {0, 1, . . . ,m1};

(b1i−m1
, b2i−m1

, . . . , bni−m1
) if i ∈ {m1 + 1,m1 + 2, . . . ,m1 +m2}

is an ε-chain in X(n) from (x1, x2, . . . , xn) to (y1, y2, . . . , yn). �
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x1

x2

U1

U2

y2

y1

m2m1

m1

m2

Figure 2.

4.5. Equivalence of (E1)-(E3). First note that (E1) =⇒ (D1) ⇐⇒ (D2).
We next show that (D2) =⇒ (E3). Let U ⊆ X be a non-empty open set

and let ε > 0. Since X is compact, there are x1, x2, . . . , xk ∈ X such that X =⋃k
i=1NX(xi, ε2 ). By (D2), f (k) : X(k) → X(k) is chain transitive. Let u ∈ U . Since

(u, u, . . . , u), (x1, x2, . . . , xk) ∈ X(k), there is an ε
2 -chain

Γ = 〈(u, u, . . . , u) = (z0
1 , z

0
2 , . . . , z

0
k), (z1

1 , z
1
2 , . . . , z

1
k), . . .

. . . , (zr1 , zr2 , . . . , zrk) = (x1, x2, . . . , xk)〉

Let x ∈ X, then x ∈ NX(xj , ε2 ) for some j ∈ {1, 2, . . . , k}. Thus, d
(
f(zr−1

j ), x
)
<

d
(
f(zr−1

j ), xj
)

+ d (xj , x) < ε
2 + ε

2 = ε. Therefore, the sequence:〈
u = z0

j , z
1
j , . . . , z

r−1
j , x

〉
is an ε-chain from u to x of length k. Hence, (E3) holds.

We now prove (E3) =⇒ (E2). Let ε > 0 and let U be a non-empty open subset
of X. Since U is non-empty, let u ∈ U . By hypothesis, there is a positive integer
nε ≥ 1 such that for each x ∈ X \ {u}, there is an ε-chain of length nε from u to x
as desired.

Finally to close the circle of equivalences we prove (E2) =⇒ (E1). Suppose
that f is exact by chains. To see that f (2) : X(2) → X(2) is chain transitive,
let (x1, x2), (y1, y2) ∈ X(2) and let ε > 0. Let U1 = NX (f(x1), ε) and U2 =
NX (f(x2), ε). By hypothesis, there are positive integers m1,m2 such that for each
x ∈ X, there exist u1 ∈ U1, u2 ∈ U2, and ε-chains, 〈u1 = a0, a1, . . . , am1 = x〉
and 〈u2 = b0, b1, . . . , bm2 = x〉. Thus, for f(x2), there are z1 ∈ U1 and an ε-chain
〈z1 = c0, c1, . . . , cm1 = f(x2)〉. Analogously, for f(x1), there are z2 ∈ U2 and an ε-
chain 〈z2 = d0, d1, . . . , dm2 = f(x1)〉. Then, for y1, we have z′2 ∈ U2 and an ε-chain
〈z′2 = s0, s1, . . . , sm2 = y1〉. Similarly, for y2, there are z′1 ∈ U1 and an ε-chain
〈z′1 = t0, t1, . . . , tm1 = y2〉. Thus, the sequences:

〈x1, z1 = c0, c1, . . . , cm1 = f(x2), z′2 = s0, s1, . . . , sm2 = y1〉 and

〈x2, z2 = d0, d1, . . . , dm2 = f(x1), z′1 = t0, t1, . . . , tm1 = y2〉
are ε-chains of the same length. Thus, the sequence:

〈(x1, x2), (z1, z2) = (c0, d0), . . . , (sm2 , tm1) = (y1, y2)〉

is an ε-chain in X(2) (see Figure 2).

4.6. Equivalence of (F1)-(F2). In [19, Corollary 12] Richeson et al. prove that
(F1) ⇐⇒ (F2). It therefore remains to prove the equivalence of, say (F1) to one
of the statements above.
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x2 x1
m3(m1 +m2)

Γ3
z

m1

Γ1

m2

Γ2

Figure 3.

We first show (D2) =⇒ (F1). Let n ≥ 1 and ε > 0. Since X is compact,
there is a sequence 0 < δ1 < δ2 < . . . < δn = ε such that if d(a, b) < δi, then
d (f(a), f(b)) < δi+1

2 , for each i ∈ {1, 2, . . . , n− 1}. Let δ = δ1
2 . By (D2), there is a

δ-chain in X(n)

〈(x, y, . . . , y) = (z0
1 , z

0
2 , . . . , z

0
n), (z1

1 , z
1
2 , . . . , z

1
n), . . .
. . . , (zt1, zt2, . . . , ztn) = (y, y, . . . , y)〉

with t ≥ 1. Thus, the sequence:

〈x = z0
1 , z

1
1 , z

2
1 , . . . , z

t
1 = y = z0

2 , z
1
2 , . . . , z

t
2 = y = z0

3 , . . . , z
t
n = y〉

is a δ-chain of length tn. Renaming the elements of this δ-chain, we can write it as:

〈x = a0, a1, . . . , atn = y〉

Since d (f(x), a1) < δ < δ1, then d
(
f2(x), f(a1)

)
< δ2

2 . Also we have that
d (f(a1), a2) < δ2

2 , then d
(
f2(x), a2

)
< δ2. Again, since d

(
f2(x), a2

)
< δ2, then

d
(
f3(x), f(a2)

)
< δ3

2 . But d (f(a2), a3) < δ3
2 , then d

(
f3(x), a3

)
< δ3. Continue

this process, we finally get d (fn(x), an) < δn = ε. Analogously, d
(
fn(ain), a(i+1)n

)
<

ε, for each i ∈ {0, 1, . . . , t− 1}. Thus, the sequence:

〈x = z0, z1 = an, z2 = a2n, . . . , zt = atn = y〉

is an ε-chain in X for the function fn. Hence, fn is chain transitive for every n ≥ 1.
Finally, we show (F1) =⇒ (E1). Let (x1, x2), (y1, y2) ∈ X(2), let ε > 0 and

let z ∈ X. Since f is totally chain transitive, in particular f is chain transitive.
Then there is an ε-chain Γ1, of length m1, from x1 to z and also there is an ε-
chain Γ2, of length m2, form z to x1. By hypothesis, the function fm1+m2 is chain
transitive, then there is an ε-chain Γ′3 for fm1+m2 from x2 to x1 of length m3,
Γ′3 = 〈x2 = a0, a1, . . . , am3 = x1〉. Since the sequence Γ3 given by:

Γ3 = 〈x2 = a0, f(a0), f2(a0), . . . , fm1+m2−1(a0), a1, f(a1), . . .
. . . , fm1+m2−1(a1), a2, . . . , am3−1, f(am3−1), . . .

. . . , fm1+m2−1(am3−1), am3 = x1〉

is an ε-chain for f from x2 to x1 of length m3(m1 + m2). Hence, the sequences
Γ1+m3(Γ2+Γ1) and Γ3+Γ1 are ε-chains from x1 to z and from x2 to z, respectively,
of length m3(m1 +m2)+m1 (see Figure 3). Thus, these ε-chains of the same length
induce an ε-chain Γ in X(2) from (x1, x2) to (z, z). Analogously, we can construct
an ε-chain Ψ in X(2) from (z, z) to (y1, y2). Therefore, the concatenation Γ + Ψ
is an ε-chain in X(2) from (x1, x2) to (y1, y2). Hence, f (2) : X(2) → X(2) is chain
transitive. This finishes the proof of our main theorem.

5. An application to the dynamics on continua

Recall that a continuum is a non-empty compact connected metric space.
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Lemma 12. Let X be a continuum and let f : X → X be a continuous function.
Suppose that f is chain transitive. If U and V are two non-empty proper disjoint
open subsets of X, then either ClX (f(U)) * V or ClX (f(V )) * U .

Proof. Assume that the lemma is not true. Let U, V be non-empty proper disjoint
open subsets of X such that ClX (f(U)) ⊂ V and ClX (f(V )) ⊂ U . Let ε1, ε2 > 0
such that NX (ClX (f(U)) , ε1) ⊂ V and NX (ClX (f(V )) , ε2) ⊂ U . Since X is
connected, there is z ∈ X \ (U ∪ V ). If ε = min{ε1, ε2}, then for x ∈ U , f(x) ∈
Cl (f(U)). Thus, if x1 ∈ X is such that d(x1, f(x)) < ε, then x1 ∈ V and, thus,
f(x1) ∈ Cl (f(V )). If x2 ∈ X is such that d(x2, f(x1)) < ε, then x2 ∈ U . Therefore,
there is no an ε-chain from x to z, which contradicts our hypothesis. �

As a consequence of Lemma 12 and Theorem 3 we have the following corollary.

Corollary 13. Let X be a continuum and f : X → X a continuous function. Then
f is chain transitive if and only if one, and hence all of the conditions in Theorem
3 hold. Furthermore all of these conditions are equivalent to requiring that f is
chain recurrent.

Proof. For the last part recall that in [19, Corollary 14] Richeson et al. prove that,
for continua, chain recurrence is equivalent to chain transitivity. �

Using the fact that if X is a continuum, then 2X is also a continuum (see [15,
Corollary 1.8.9]), and the equivalence between chain transitivity of f and 2f from
the previous corollary, we obtain the following result.

Corollary 14. Let X be a continuum and let f : X → X be a continuous function.
The following are equivalent:

(1) f is chain transitive,
(2) 2f is chain transitive,
(3) 2f is totally chain transitive,
(4) 2f is chain weakly mixing,
(5) 2f exact by chains,
(6) 2f is chain mixing,
(7) 2f is chain recurrent.

Corollary 13 tells us that in continua, if f is chain transitive, then fn and 2f are
chain transitive. This does not hold for C(f) in general. In the following example
we give a chain transitive continuous function which has a fixed point and thus, by
Corollary 5, 2f is chain transitive but C(f) is not.

Example 4. Let I = [0, 1] be the unit interval and let T : I → I be the tent
map as in Example 2. We have seen that T is weakly mixing, hence transitive,
and in particular chain transitive. Let A = [0, 1] and B = {0}. Assume that
there is a 1

8 -chain in C(X) from A to B, Γ = 〈A = C0, C1, C2, . . . , Ck = B〉, with
k ∈ N. Since H (C(T )(A), C1) < 1

8 , then [0, 1] ⊆ N(C1,
1
8 ). Then

[ 1
8 ,

7
8
]
⊆ C1,

thus,
[ 1

4 , 1
]

= C(T )
([ 1

8 ,
7
8
])
⊆ C(T )(C1). Now, since H(C(T )(C1), C2) < 1

8 ,
then

[ 1
4 , 1
]
⊆ C(T )(C1) ⊂ N

(
C2,

1
8
)
, and thus,

[ 3
8 ,

7
8
]
⊆ C2. Therefore,

[ 1
4 , 1
]

=
C(T )

([ 3
8 ,

7
8
])
⊆ C(T )(C2). We can see that

[ 1
4 , 1
]

is always a subset of C(T )(Cj),
for each j ∈ {0, 1, . . . , k − 1}. Thus, H (C(T )(Ck−1), B) can not be less that 1

8 .
This implies that C(T ) is not chain transitive.

Theorem 15. Let X be a compact metric space and let f : X → X be a continuous
function such that f2 is chain transitive. If X has finitely many components, then
X is connected.
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Proof. Assume that X has r components say K1,K2, . . . ,Kr. Let δ > 0 such that
δ < min {d (Ki,Kj) | i, j ∈ 1, 2, . . . , r}. If A = {a1, a2} ⊆ K1 and B = {b1, b2} such
that bi ∈ Ki, i ∈ {1, 2}, then there is no a δ-chain from A to B in F2(X), which
contradicts our assumption. �

Nevertheless, it is possible to find a space X, which has infinitely many compo-
nents, and a continuous function f : X → X for which f2 : F2(X)→ F2(X) is chain
transitive.

Example 5. Let Σ2 =
∏∞
i=1Ai, where Ai = {0, 1} for all i ≥ 1, and let σ : Σ2 → Σ2

given by σ(a1, a2, ...) = (a2, a3, ...). The function σ is known as the shift map. It
is easy to see that σ : Σ2 → Σ2 is exact and, therefore, weakly mixing. Thus,
σn : Fn(Σ2) → Fn(Σ2) is transitive for each n ≥ 1 [10, Theorem 4.5], thus σ and
σn are chain transitive.
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