A characterisation of compatible state space aggregations

Mate Puljiz
University of Birmingham

joint work with
Chris Good, David Parker, and Jonathan E. Rowe

HieDy, ECAL 2015
York, $24^{\text {th }}$ July 2015

What are we studying?

- When can we simplify an iterated system

$$
\boldsymbol{x}_{n+1}=f\left(\boldsymbol{x}_{n}\right), \text { where } f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N} \text { ? }
$$

- E.g.

$$
\begin{gathered}
x_{n+1}=x_{n}^{2}, \\
y_{n+1}=y_{n}^{2}+2 x_{n} y_{n}, \\
z_{n+1}=z_{n}+w_{n}, \\
w_{n+1}=0,
\end{gathered}
$$

can be simplified to

$$
\begin{aligned}
X_{n+1} & =X_{n}^{2}, \\
Y_{n+1} & =Y_{n},
\end{aligned}
$$

where $X_{i}=x_{i}+y_{i}$ and $Y_{i}=z_{i}+w_{i}$.

Why are we studying this?

- Very general framework
- Simplifying real-life models (model reduction)
- Discovering underlying regularities of a model
- Efficient usage of computational resources

Our goal

- Identify a class of iterated systems of interest
- Interpret these as a parametrised set of models for artificial chemistries
- Given one such model, characterise its compatible aggregations in terms of the intrinsic parameters of the model

Notation

- Aggregation - a partition of the set of variables (sometimes the induced equivalence relation on $\{1,2, \ldots, N\}$)
- $\{\{x, y\},\{z, w\}\}$ above
- Can be encoded by a 0-1 column stochastic matrix
- E.g. $\Xi=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$ above as

$$
\left(X_{i}, Y_{i}\right)^{T}=\Xi \cdot\left(x_{i}, y_{i}, z_{i}, w_{i}\right)^{T}
$$

- Compatible aggregation - an aggregation for which the coarse grained description is well-defined

Class 1 - Markov Chains

Parameter set

M - an $N \times N$ column stochastic matrix
Iterated system

$$
\boldsymbol{p}_{n+1}=M \boldsymbol{p}_{n}
$$

where $\boldsymbol{p}=\left(p^{1}, p^{2}, \ldots, p^{N}\right)$
Proposition (Folklore, see Kemeny \& Snell [9])
An equivalence relation \equiv on the set of states $\{1,2 \ldots, N\}$ is a compatible aggregation if and only if any two equivalent states have exactly the same outgoing transition probabilities towards any of the blocks of the (induced) partition.

A picture

A picture

A picture

Class 1 - Markov Chains

Proposition (Folklore, see Kemeny \& Snell [9])

An equivalence relation \equiv on the set of states $\{1,2 \ldots, N\}$ is a compatible aggregation for M if and only if any two equivalent states have exactly the same outgoing transition probabilities towards any of the blocks of the (induced) partition.

Note that if we denote by Ξ the associated 0-1 matrix, the condition above could be equally written as
$\Xi\left(M_{i}\right)=\Xi\left(M_{j}\right) \quad$ whenever $\quad i, j \in\{1,2, \ldots, N\}$ such that $i \equiv j$,
where M_{k} is the $\mathrm{k}^{\text {th }}$ column of M.

Class 1 - Markov Chains

More abstractly
$\Xi\left(\alpha_{v}\right)=\Xi\left(\alpha_{w}\right)$
whenever $v, w \in \mathbb{Z}_{+}^{N}$ such that $\Xi(v)=\Xi(w)$,
where $\alpha_{v}=\partial_{v} M(0, \ldots, 0)=\left\{\begin{array}{l}M_{i}, \text { if } \boldsymbol{v}=\boldsymbol{e}_{\boldsymbol{i}}, \quad\left(\partial_{e_{i}}=\partial_{i}\right) \\ (0, \ldots, 0)^{T}, \text { otherwise } .\end{array}\right.$

Note that if we denote by Ξ the associated 0-1 matrix, the condition above could be equally written as
$\Xi\left(M_{i}\right)=\Xi\left(M_{j}\right) \quad$ whenever $\quad i, j \in\{1,2, \ldots, N\}$ such that $i \equiv j$, where M_{k} is the $\mathrm{k}^{\text {th }}$ column of M.

Class 2 - Binary Tournaments

Parameter set

$\leftharpoonup-$ an orientation on a complete graph on N vertices (a finite set of parameters)

Class 2 - Binary Tournaments

Parameter set

$\leftharpoonup-$ an orientation on a complete graph on N vertices (a finite set of parameters)

Class 2 - Binary Tournaments

Parameter set

$\leftharpoonup-$ an orientation on a complete graph on N vertices (a finite set of parameters)

Iterated system

$$
p_{n+1}^{i}=\left(p_{n}^{i}\right)^{2}+2 \sum_{i \leftharpoonup k} p_{n}^{k} \cdot p_{n}^{i}=\left(T\left(p_{n}^{1}, \ldots, p_{n}^{N}\right)\right)_{i}
$$

for $i \in\{1,2, \ldots, N\}$

Class 2 - Binary Tournaments

Proposition

An equivalence relation \equiv on $\{1,2 \ldots, N\}$ is a compatible aggregation for the iterated system above if and only if

$$
i \equiv j \equiv k \quad \text { whenever } \quad i \equiv k \text { and } i \leftharpoonup j \leftharpoonup k .
$$

A picture

A picture

A picture

A picture

Class 2 - Binary Tournaments

Proposition

An equivalence relation \equiv on $\{1,2 \ldots, N\}$ is a compatible aggregation for the iterated system above if and only if

$$
i \equiv j \equiv k \quad \text { whenever } \quad i \equiv k \text { and } i \leftharpoonup j \leftharpoonup k .
$$

More abstractly
$\Xi\left(\alpha_{v}\right)=\Xi\left(\alpha_{w}\right)$ whenever $v, w \in \mathbb{Z}_{+}^{N}$ such that $\Xi(v)=\Xi(w)$, where

$$
\alpha_{v}=\partial_{v} T(0, \ldots, 0)=\left\{\begin{array}{l}
2 \boldsymbol{e}_{\boldsymbol{i}}, \text { if } \boldsymbol{v}=2 \boldsymbol{e}_{\boldsymbol{i}}, \quad\left(\partial_{2 e_{i}}=\partial_{i i}\right) \\
2 \boldsymbol{e}_{\boldsymbol{i}}, \text { if } \boldsymbol{v}=\boldsymbol{e}_{\boldsymbol{i}}+\boldsymbol{e}_{\boldsymbol{k}} \text { and } i \leftharpoonup k, \\
(0, \ldots, 0)^{T}, \text { otherwise. } \quad\left(\partial_{e_{i}+e_{k}}=\partial_{i k}\right)
\end{array}\right.
$$

Class 2 v2 $-2^{\text {nd }}$ order Chemistry

Parameter set

$\alpha_{v}-2 \times$ the vector of probabilities of getting a certain product in a reaction represented by \boldsymbol{v}, where $\boldsymbol{v} \in \mathbb{Z}_{+}^{N}$ s.t. $|\boldsymbol{v}|=2$

Iterated system

$$
\boldsymbol{p}_{n+1}=T\left(\boldsymbol{p}_{n}\right),
$$

where $\boldsymbol{p}=\left(p^{1}, p^{2}, \ldots, p^{N}\right)$ and

$$
T(\boldsymbol{p})=\sum_{\boldsymbol{v} \in \mathbb{Z}_{+}^{N}:|\boldsymbol{v}|=2} \frac{1}{\boldsymbol{v}!} \cdot \boldsymbol{\alpha}_{\boldsymbol{v}} \cdot \boldsymbol{p}^{\boldsymbol{v}}
$$

Class 2 v2 $-2^{\text {nd }}$ order Chemistry

Proposition

An equivalence relation \equiv on $\{1,2 \ldots, N\}$ is a compatible aggregation for the iterated system above if and only if
$\Xi\left(\alpha_{v}\right)=\Xi\left(\alpha_{w}\right) \quad$ whenever $\quad v, w \in \mathbb{Z}_{+}^{N}$ such that $\Xi(v)=\Xi(w)$.

Note that $\alpha_{v}=\partial_{v} T(0, \ldots, 0)$.

Discretisation and Modelling issues

- Ω - $\{1,2, \ldots, N\}$
- T - dynamics on $\Delta_{N}=M(\Omega)$
- R - size of a total population in simulation

Discretisation and Modelling issues

- $\Omega-\{1,2, \ldots, N\}$
- T - dynamics on $\Delta_{N}=M(\Omega)$
- R - size of a total population in simulation
- $\frac{1}{R} X_{N}^{R} \subset \Delta_{N}$ - set of finite populations

Discretisation and Modelling issues

- $\Omega-\{1,2, \ldots, N\}$
- T - dynamics on $\Delta_{N}=M(\Omega)$
- R - size of a total population in simulation
- $\frac{1}{R} X_{N}^{R} \subset \Delta_{N}$ - set of finite populations
- $M\left(\frac{1}{R} X_{N}^{R}\right)=\Delta_{C(N, R)}$ - set of probabilities over finite populations

Different models

A countable family of independent random variables

$$
\left\{Z_{\alpha}^{k, i}, Y_{\beta}^{k, i}: k \in \mathbb{N}, i \in \mathbb{N}, \boldsymbol{\alpha} \in T\left(\frac{1}{R} X_{N}^{R}\right), \boldsymbol{\beta} \in \frac{1}{R} X_{N}^{R}\right\}
$$

where

$$
\begin{aligned}
Z_{\alpha}^{k, i} & \sim\left(\begin{array}{cccc}
1 & 2 & \ldots & N \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{N}
\end{array}\right) \text { and } Y_{\beta}^{k, i} \sim\left(\begin{array}{cccc}
1 & 2 & \ldots & N \\
\beta_{1} & \beta_{2} & \ldots & \beta_{N}
\end{array}\right) \\
\frac{1}{R} V_{k} & \left.=F\left(\frac{1}{R} V_{k-1} ; Z_{T\left(\frac{1}{R} V_{k-1}\right)}^{k, 1}\right) Z_{T\left(\frac{1}{R} V_{k-1}\right)}^{k, 2}, \ldots ; Y_{\frac{1}{R} V_{k-1}}^{k, 1}, Y_{\frac{1}{R} V_{k-1}}^{k, 2}, \ldots\right),
\end{aligned}
$$

for some $F: \frac{1}{R} X_{N}^{R} \times \Omega^{\infty} \times \Omega^{\infty} \rightarrow \frac{1}{R} X_{N}^{R}$ which is assumed to be compatible with $\Xi_{\pi} \times \pi^{\infty} \times \pi^{\infty}$ (for any quotient map $\pi: \Omega \rightarrow \tilde{\Omega}$)

Different models

Generational model

$$
F_{2}\left(\frac{1}{R} \boldsymbol{v} ; i_{1}, i_{2}, \ldots ; j_{1}, j_{2}, \ldots\right)=\frac{1}{R}\left(e_{i_{1}}+e_{i_{2}}+\cdots+e_{i_{R}}\right)
$$

One at a time reaction

$$
F_{1}\left(\frac{1}{R} \boldsymbol{v} ; i_{1}, i_{2}, \ldots ; j_{1}, j_{2}, \ldots\right)=\frac{1}{R}\left(\boldsymbol{v}+\boldsymbol{e}_{i_{1}}-\boldsymbol{e}_{j_{1}}\right)
$$

Proposition

If Ξ is a compatible aggregation for T, then the Markov chains induced by the modelling functions F_{1} (Vose [20]) or F_{2} (or other compatible F) can be aggregated in the same way.

Class 3 - A very general heuristic model

Parameter set

$\alpha_{v}-2 \times$ the vector of probabilities of getting a certain product in a reaction represented by \boldsymbol{v}, where $\boldsymbol{v} \in \mathbb{Z}_{+}^{N}$ s.t. $|\boldsymbol{v}|=2$

Iterated system

$$
\boldsymbol{p}_{n+1}=T\left(\boldsymbol{p}_{n}\right),
$$

where $\boldsymbol{p}=\left(p^{1}, p^{2}, \ldots, p^{N}\right)$ and

$$
T(\boldsymbol{p})=\sum_{\boldsymbol{v} \in \mathbb{Z}_{+}^{N}:|\boldsymbol{v}|=2} \frac{1}{\boldsymbol{v}!} \cdot \boldsymbol{\alpha}_{\boldsymbol{v}} \cdot \boldsymbol{p}^{\boldsymbol{v}}
$$

Class 3 - A very general heuristic model

Parameter set

$\alpha_{v}-|v|!\times$ the vector of probabilities of getting a certain product in a reaction represented by \boldsymbol{v}, where $\boldsymbol{v} \in \mathbb{Z}_{+}^{N}-$

Iterated system

$$
\boldsymbol{p}_{n+1}=T\left(\boldsymbol{p}_{n}\right),
$$

where $\boldsymbol{p}=\left(p^{1}, p^{2}, \ldots, p^{N}\right)$ and

$$
T(\boldsymbol{p})=\sum_{\boldsymbol{v} \in \mathbb{Z}_{+}^{N}-} \frac{1}{\boldsymbol{v}!} \cdot \boldsymbol{\alpha}_{\boldsymbol{v}} \cdot \boldsymbol{p}^{v}
$$

Class 3 - Compatible aggregations

Theorem
An equivalence relation \equiv on $\{1,2 \ldots, N\}$ is a compatible aggregation for the iterated system above if and only if
$\Xi\left(\alpha_{v}\right)=\Xi\left(\alpha_{w}\right) \quad$ whenever $\quad v, w \in \mathbb{Z}_{+}^{N}$ such that $\Xi(v)=\Xi(w)$.

Note that $\alpha_{v}=\partial_{v} T(0, \ldots, 0)$.

Modulo 12 Game

An application to Kinetochore

Model by R. Henze, and B. Ibrahim

Acknowledgements

The authors acknowledge support from the European Union through funding under FP7-ICT-2011-8 project HIERATIC (316705).

Thank you for your attention!

References I

[1] L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR1176513 (93g:58091)
[2] Keki Burjorjee, Sufficient conditions for coarse-graining evolutionary dynamics, Foundations of genetic algorithms, 2007, pp. 35-53.
[3] S. Derisavi, H. Hermanns, and W. Sanders, Optimal state-space lumping in Markov chains, Information Processing Letters 87 (2003September), no. 6, 309-315.
[4] Peter Dittrich and Pietro Speroni Di Fenizio, Chemical organisation theory, Bulletin of mathematical biology 69 (2007), no. 4, 1199-1231.
[5] Walter Fontana and Leo W Buss, The arrival of the fittest: Toward a theory of biological organization, Bulletin of Mathematical Biology 56 (1994), no. 1, 1-64.
[6] Aleksandr Nikolaevich Gorban, Nikolas K Kazantzis, Ioannis G Kevrekidis, Hans Christian Öttinger, and Constantinos Theodoropoulos, Model reduction and coarse-graining approaches for multiscale phenomena, Springer, 2006.
[7] Martin N. Jacobi, Hierarchical organization in smooth dynamical systems, Artif. Life 11 (December 2005), no. 4, 493-512.
[8] Martin Nilsson Jacobi and Olof Görnerup, A spectral method for aggregating variables in linear dynamical systems with application to cellular automata renormalization, Advances in Complex Systems 12 (2009), no. 02, 131-155.
[9] John G. Kemeny and J. Laurie Snell, Finite Markov chains, Springer-Verlag, New York-Heidelberg, 1976. Reprinting of the 1960 original, Undergraduate Texts in Mathematics. MR0410929 (53 \#14670)
[10] Genyuan Li and Herschel Rabitz, A general analysis of exact lumping in chemical kinetics, Chemical engineering science 44 (1989), no. 6, 1413-1430.
[11] \quad, A general analysis of approximate lumping in chemical kinetics, Chemical engineering science 45 (1990), no. 4, 977-1002.

References II

[12] Genyuan Li, Herschel Rabitz, and János Tóth, A general analysis of exact nonlinear lumping in chemical kinetics, Chemical Engineering Science 49 (1994), no. 3, 343-361.
[13] J. R. Norris, Markov chains, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2, Cambridge University Press, Cambridge, 1998. Reprint of 1997 original. MR1600720 (99c:60144)
[14] Robert Paige and Robert E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (1987), no. 6, 973-989. MR917035 (89h:68069)
[15] Jonathan E. Rowe, Michael D. Vose, and Alden H. Wright, Coarse graining selection and mutation, Foundations of genetic algorithms, 2005, pp. 176-191. MR2238251
[16] , State aggregation and population dynamics in linear systems, Artif. Life 11 (December 2005), no. 4, 473-492.
[17] , Differentiable coarse graining, Theoret. Comput. Sci. 361 (2006), no. 1, 111-129. MR2254227 (2007h:68171)
[18] Hal L. Smith and Horst R. Thieme, Dynamical systems and population persistence, Graduate Studies in Mathematics, vol. 118, American Mathematical Society, Providence, RI, 2011. MR2731633 (2012c:92060)
[19] Alison S Tomlin, Genyuan Li, Herschel Rabitz, and János Tóth, The effect of lumping and expanding on kinetic differential equations, SIAM Journal on Applied Mathematics 57 (1997), no. 6, 1531-1556.
[20] Michael D. Vose, The simple genetic algorithm, Complex Adaptive Systems, MIT Press, Cambridge, MA, 1999. Foundations and theory, A Bradford Book. MR1713436 (2000h:65024)

A characterisation of compatible state space aggregations

Mate Puljiz
University of Birmingham

joint work with
Chris Good, David Parker, and Jonathan E. Rowe

HieDy, ECAL 2015
York, $24^{\text {th }}$ July 2015

