A characterisation of compatible state space aggregations

Mate Puljiz University of Birmingham

joint work with Chris Good, David Parker, and Jonathan E. Rowe

HieDy, ECAL 2015 York, 24th July 2015

1/25

What are we studying?

When can we simplify an iterated system

$$\boldsymbol{x}_{n+1} = f(\boldsymbol{x}_n), \text{ where } f: \mathbb{R}^N \to \mathbb{R}^N$$
?

► E.g.

$$x_{n+1} = x_n^2,$$

$$y_{n+1} = y_n^2 + 2x_n y_n,$$

$$z_{n+1} = z_n + w_n,$$

$$w_{n+1} = 0,$$

can be simplified to

$$X_{n+1} = X_n^2,$$

$$Y_{n+1} = Y_n,$$

where $X_i = x_i + y_i$ and $Y_i = z_i + w_i$.

2/25

Why are we studying this?

- Very general framework
- Simplifying real-life models (model reduction)
- Discovering underlying regularities of a model
- Efficient usage of computational resources

Our goal

- Identify a class of iterated systems of interest
- Interpret these as a parametrised set of models for artificial chemistries
- Given one such model, characterise its compatible aggregations in terms of the intrinsic parameters of the model

Notation

➤ Aggregation – a partition of the set of variables (sometimes the induced equivalence relation on {1, 2, ..., N})

{{x, y}, {z, w}} above
Can be encoded by a 0-1 column stochastic matrix
E.g. Ξ =
$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 above as $(X_i, Y_i)^T = \Xi \cdot (x_i, y_i, z_i, w_i)^T$

 Compatible aggregation – an aggregation for which the coarse grained description is well-defined

Class 1 – Markov Chains

Parameter set M – an $N \times N$ column stochastic matrix

Iterated system

$$\boldsymbol{p}_{n+1} = M \boldsymbol{p}_n,$$

where $\boldsymbol{p} = (p^1, p^2, \dots, p^N)$

Proposition (Folklore, see Kemeny & Snell [9])

An equivalence relation \equiv on the set of states $\{1, 2, ..., N\}$ is a compatible aggregation if and only if any two equivalent states have exactly the same outgoing transition probabilities towards any of the blocks of the (induced) partition.

Class 1 – Markov Chains

Proposition (Folklore, see Kemeny & Snell [9])

An equivalence relation \equiv on the set of states $\{1, 2..., N\}$ is a compatible aggregation for M if and only if any two equivalent states have exactly the same outgoing transition probabilities towards any of the blocks of the (induced) partition.

Note that if we denote by Ξ the associated $0\mathchar`-1$ matrix, the condition above could be equally written as

 $\Xi(M_i) = \Xi(M_j) \quad \text{whenever} \quad i, j \in \{1, 2, \dots, N\} \text{ such that } i \equiv j,$ where M_k is the kth column of M.

Class 1 – Markov Chains

More abstractly

 $\Xi(oldsymbol{lpha}_{oldsymbol{v}})=\Xi(oldsymbol{lpha}_{oldsymbol{w}})$ whenever $oldsymbol{v},oldsymbol{w}\in\mathbb{Z}_+^N$ such that $\Xi(oldsymbol{v})=\Xi(oldsymbol{w}),$

where
$$\boldsymbol{\alpha}_{\boldsymbol{v}} = \partial_{\boldsymbol{v}} M(0, \dots, 0) = \begin{cases} M_i, \text{ if } \boldsymbol{v} = \boldsymbol{e}_i, & (\partial_{\boldsymbol{e}_i} = \partial_i) \\ (0, \dots, 0)^T, \text{ otherwise.} \end{cases}$$

Note that if we denote by Ξ the associated $0\mathchar`-1$ matrix, the condition above could be equally written as

 $\Xi(M_i) = \Xi(M_j) \quad \text{whenever} \quad i, j \in \{1, 2, \dots, N\} \text{ such that } i \equiv j,$ where M_k is the kth column of M.

Parameter set

- – an orientation on a complete graph on N vertices (a finite set of parameters)

P Sc

Parameter set

- – an orientation on a complete graph on N vertices (a finite set of parameters)

Parameter set

- – an orientation on a complete graph on N vertices (a finite set of parameters)

Iterated system

$$p_{n+1}^i = (p_n^i)^2 + 2\sum_{i \leftarrow k} p_n^k \cdot p_n^i = (T(p_n^1, \dots, p_n^N))_i,$$

イロン 不得 とうほう イロン 二日

9/25

for $i \in \{1, 2, \ldots, N\}$

Proposition

An equivalence relation \equiv on $\{1, 2..., N\}$ is a compatible aggregation for the iterated system above if and only if

$$i \equiv j \equiv k$$
 whenever $i \equiv k$ and $i \leftarrow j \leftarrow k$.

Proposition

An equivalence relation \equiv on $\{1, 2..., N\}$ is a compatible aggregation for the iterated system above if and only if

$$i \equiv j \equiv k$$
 whenever $i \equiv k$ and $i \leftarrow j \leftarrow k$.

More abstractly

 $\Xi(\boldsymbol{\alpha}_{\boldsymbol{v}}) = \Xi(\boldsymbol{\alpha}_{\boldsymbol{w}}) \quad \text{whenever} \quad \boldsymbol{v}, \boldsymbol{w} \in \mathbb{Z}_{+}^{N} \text{ such that } \Xi(\boldsymbol{v}) = \Xi(\boldsymbol{w}),$ where $\sum_{i=1}^{N} 2\boldsymbol{e}_{i}, \text{ if } \boldsymbol{v} = 2\boldsymbol{e}_{i}, \qquad (\partial_{2\boldsymbol{e}_{i}} = \partial_{ii})$

$$\boldsymbol{\alpha}_{\boldsymbol{v}} = \partial_{\boldsymbol{v}} T(0, \dots, 0) = \begin{cases} 2\boldsymbol{e}_{\boldsymbol{i}}, \text{ if } \boldsymbol{v} = \boldsymbol{e}_{\boldsymbol{i}} + \boldsymbol{e}_{\boldsymbol{k}} \text{ and } \boldsymbol{i} \leftarrow \boldsymbol{k}, \\ (0, \dots, 0)^T, \text{ otherwise.} \quad (\partial_{\boldsymbol{e}_{\boldsymbol{i}} + \boldsymbol{e}_{\boldsymbol{k}}} = \partial_{\boldsymbol{i}\boldsymbol{k}}) \end{cases}$$

Class 2 v2 – 2nd order Chemistry

Parameter set

 $\alpha_v - 2 \times$ the vector of probabilities of getting a certain product in a reaction represented by v, where $v \in \mathbb{Z}_+^N$ s.t. |v| = 2

イロト 不得 トイヨト イヨト 二日

Iterated system

$$m{p_{n+1}} = T(m{p_n}),$$

where $m{p} = (p^1, p^2, \dots, p^N)$ and
 $T(m{p}) = \sum_{m{v} \in \mathbb{Z}_+^N : |m{v}| = 2} rac{1}{m{v}!} \cdot m{lpha}_{m{v}} \cdot m{p}^{m{v}}$

Proposition

An equivalence relation \equiv on $\{1, 2..., N\}$ is a compatible aggregation for the iterated system above if and only if

 $\Xi(\boldsymbol{\alpha}_{\boldsymbol{v}}) = \Xi(\boldsymbol{\alpha}_{\boldsymbol{w}})$ whenever $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{Z}^N_+$ such that $\Xi(\boldsymbol{v}) = \Xi(\boldsymbol{w})$.

Note that $\alpha_v = \partial_v T(0, \ldots, 0)$.

Discretisation and Modelling issues

$$\blacktriangleright \ \Omega - \{1, 2, \dots, N\}$$

•
$$T$$
 — dynamics on $\Delta_N = M(\Omega)$

• R — size of a total population in simulation

Discretisation and Modelling issues

$$\blacktriangleright \ \Omega - \{1, 2, \dots, N\}$$

•
$$T$$
 — dynamics on $\Delta_N = M(\Omega)$

- R size of a total population in simulation
- $\frac{1}{R}X_N^R \subset \Delta_N$ set of finite populations

Discretisation and Modelling issues

$$\blacktriangleright \ \Omega - \{1, 2, \dots, N\}$$

- T dynamics on $\Delta_N = M(\Omega)$
- R size of a total population in simulation
- $\frac{1}{R}X_N^R \subset \Delta_N$ set of finite populations
- ▶ $M(\frac{1}{R}X_N^R) = \Delta_{C(N,R)}$ set of probabilities over finite populations

Different models

A countable family of independent random variables

$$\left\{Z^{k,i}_{\boldsymbol{\alpha}}, \, Y^{k,i}_{\boldsymbol{\beta}} : k \in \mathbb{N}, i \in \mathbb{N}, \boldsymbol{\alpha} \in T\left(\frac{1}{R}X^R_N\right), \boldsymbol{\beta} \in \frac{1}{R}X^R_N\right\},\,$$

where

$$Z^{k,i}_{\alpha} \sim \begin{pmatrix} 1 & 2 & \dots & N \\ \alpha_1 & \alpha_2 & \dots & \alpha_N \end{pmatrix} \text{ and } Y^{k,i}_{\beta} \sim \begin{pmatrix} 1 & 2 & \dots & N \\ \beta_1 & \beta_2 & \dots & \beta_N \end{pmatrix}$$

$$\frac{1}{R}V_k = F\left(\frac{1}{R}V_{k-1}; Z_{T\left(\frac{1}{R}V_{k-1}\right)}^{k,1}, Z_{T\left(\frac{1}{R}V_{k-1}\right)}^{k,2}, \dots; Y_{\frac{1}{R}V_{k-1}}^{k,1}, Y_{\frac{1}{R}V_{k-1}}^{k,2}, \dots\right),$$

for some $F: \frac{1}{R}X_N^R \times \Omega^{\infty} \times \Omega^{\infty} \to \frac{1}{R}X_N^R$ which is assumed to be compatible with $\Xi_{\pi} \times \pi^{\infty} \times \pi^{\infty}$ (for any quotient map $\pi: \Omega \to \tilde{\Omega}$)

Different models

Generational model

$$F_2\left(\frac{1}{R}\boldsymbol{v}; i_1, i_2, \dots; j_1, j_2, \dots\right) = \frac{1}{R}\left(\boldsymbol{e_{i_1}} + \boldsymbol{e_{i_2}} + \dots + \boldsymbol{e_{i_R}}\right)$$

One at a time reaction

$$F_1\left(\frac{1}{R}\boldsymbol{v}; i_1, i_2, \ldots; j_1, j_2, \ldots\right) = \frac{1}{R}\left(\boldsymbol{v} + \boldsymbol{e_{i_1}} - \boldsymbol{e_{j_1}}\right)$$

Proposition

If Ξ is a compatible aggregation for T, then the Markov chains induced by the modelling functions F_1 (Vose [20]) or F_2 (or other compatible F) can be aggregated in the same way.

Class 3 – A very general heuristic model

Parameter set

 $\alpha_{\pmb{v}}-2\times$ the vector of probabilities of getting a certain product in a reaction represented by \pmb{v} , where $\pmb{v}\in\mathbb{Z}_+^N$ s.t. $|\pmb{v}|=2$

イロト 不得 トイヨト イヨト 二日

18 / 25

Iterated system

$$p_{n+1} = T(p_n),$$
 where $p = (p^1, p^2, \dots, p^N)$ and

$$T(p) = \sum_{v \in \mathbb{Z}_+^N : |v| = 2} \frac{1}{v!} \cdot \alpha_v \cdot p^v$$

Class 3 – A very general heuristic model

Parameter set

 $\alpha_v - |v|! \times$ the vector of probabilities of getting a certain product in a reaction represented by v, where $v \in \mathbb{Z}^N_+$ —

Iterated system

$$p_{n+1} = T(p_n),$$
 where $p = (p^1, p^2, \dots, p^N)$ and
$$T(p) = \sum_{v \in \mathbb{Z}_+^N} \frac{1}{v!} \cdot \alpha_v \cdot p^v$$

Class 3 – Compatible aggregations

Theorem

An equivalence relation \equiv on $\{1, 2..., N\}$ is a compatible aggregation for the iterated system above if and only if

 $\Xi(\boldsymbol{\alpha}_{\boldsymbol{v}}) = \Xi(\boldsymbol{\alpha}_{\boldsymbol{w}})$ whenever $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{Z}^N_+$ such that $\Xi(\boldsymbol{v}) = \Xi(\boldsymbol{w})$.

Note that $\alpha_v = \partial_v T(0, \dots, 0)$.

Modulo 12 Game

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An application to Kinetochore

Model by R. Henze, and B. Ibrahim

The authors acknowledge support from the European Union through funding under FP7-ICT-2011-8 project HIERATIC (316705).

Thank you for your attention!

References I

- L. S. Block and W. A. Coppel, *Dynamics in one dimension*, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR1176513 (93g:58091)
- [2] Keki Burjorjee, Sufficient conditions for coarse-graining evolutionary dynamics, Foundations of genetic algorithms, 2007, pp. 35–53.
- [3] S. Derisavi, H. Hermanns, and W. Sanders, Optimal state-space lumping in Markov chains, Information Processing Letters 87 (2003September), no. 6, 309–315.
- [4] Peter Dittrich and Pietro Speroni Di Fenizio, Chemical organisation theory, Bulletin of mathematical biology 69 (2007), no. 4, 1199–1231.
- [5] Walter Fontana and Leo W Buss, The arrival of the fittest: Toward a theory of biological organization, Bulletin of Mathematical Biology 56 (1994), no. 1, 1–64.
- [6] Aleksandr Nikolaevich Gorban, Nikolas K Kazantzis, Ioannis G Kevrekidis, Hans Christian Ottinger, and Constantinos Theodoropoulos, *Model reduction and coarse-graining approaches for multiscale phenomena*, Springer, 2006.
- [7] Martin N. Jacobi, Hierarchical organization in smooth dynamical systems, Artif. Life 11 (December 2005), no. 4, 493–512.
- [8] Martin Nilsson Jacobi and Olof Görnerup, A spectral method for aggregating variables in linear dynamical systems with application to cellular automata renormalization, Advances in Complex Systems 12 (2009), no. 02, 131–155.
- John G. Kemeny and J. Laurie Snell, *Finite Markov chains*, Springer-Verlag, New York-Heidelberg, 1976. Reprinting of the 1960 original, Undergraduate Texts in Mathematics. MR0410929 (53 #14670)
- [10] Genyuan Li and Herschel Rabitz, A general analysis of exact lumping in chemical kinetics, Chemical engineering science 44 (1989), no. 6, 1413–1430.
- [11] _____, A general analysis of approximate lumping in chemical kinetics, Chemical engineering science 45 (1990), no. 4, 977–1002.

References II

- [12] Genyuan Li, Herschel Rabitz, and János Tóth, A general analysis of exact nonlinear lumping in chemical kinetics, Chemical Engineering Science 49 (1994), no. 3, 343–361.
- [13] J. R. Norris, Markov chains, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2, Cambridge University Press, Cambridge, 1998. Reprint of 1997 original. MR1600720 (99c:60144)
- [14] Robert Paige and Robert E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (1987), no. 6, 973–989. MR917035 (89h:68069)
- [15] Jonathan E. Rowe, Michael D. Vose, and Alden H. Wright, Coarse graining selection and mutation, Foundations of genetic algorithms, 2005, pp. 176–191. MR2238251
- [16] _____, State aggregation and population dynamics in linear systems, Artif. Life 11 (December 2005), no. 4, 473–492.
- [17] _____, Differentiable coarse graining, Theoret. Comput. Sci. 361 (2006), no. 1, 111–129. MR2254227 (2007h:68171)
- [18] Hal L. Smith and Horst R. Thieme, Dynamical systems and population persistence, Graduate Studies in Mathematics, vol. 118, American Mathematical Society, Providence, RI, 2011. MR2731633 (2012c:92060)
- [19] Alison S Tomlin, Genyuan Li, Herschel Rabitz, and János Tóth, The effect of lumping and expanding on kinetic differential equations, SIAM Journal on Applied Mathematics 57 (1997), no. 6, 1531–1556.
- [20] Michael D. Vose, The simple genetic algorithm, Complex Adaptive Systems, MIT Press, Cambridge, MA, 1999. Foundations and theory, A Bradford Book. MR1713436 (2000h:65024)

A characterisation of compatible state space aggregations

Mate Puljiz University of Birmingham

joint work with Chris Good, David Parker, and Jonathan E. Rowe

HieDy, ECAL 2015 York, 24th July 2015

イロト 不得 トイヨト イヨト 二日

25 / 25