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What are we studying?
I When can we simplify an iterated system

xn+1 = f (xn), where f : RN → RN ?

I E.g.

xn+1 = x2
n ,

yn+1 = y2
n + 2xnyn ,

zn+1 = zn + wn ,

wn+1 = 0,

can be simplified to

Xn+1 = X2
n ,

Yn+1 = Yn ,

where Xi = xi + yi and Yi = zi + wi .
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Why are we studying this?

I Very general framework
I Simplifying real-life models (model reduction)
I Discovering underlying regularities of a model
I Efficient usage of computational resources
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Our goal

I Identify a class of iterated systems of interest
I Interpret these as a parametrised set of models for artificial

chemistries
I Given one such model, characterise its compatible

aggregations in terms of the intrinsic parameters of the model

4 / 25



Notation

I Aggregation – a partition of the set of variables
(sometimes the induced equivalence relation on {1, 2, . . . ,N})

I {{x, y}, {z,w}} above
I Can be encoded by a 0-1 column stochastic matrix
I E.g. Ξ =

[
1 1 0 0
0 0 1 1

]
above as

(Xi ,Yi)T = Ξ · (xi , yi , zi ,wi)T

I Compatible aggregation – an aggregation for which the coarse
grained description is well-defined
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Class 1 – Markov Chains

Parameter set
M – an N ×N column stochastic matrix

Iterated system

pn+1 = Mpn ,

where p = (p1, p2, . . . , pN )

Proposition (Folklore, see Kemeny & Snell [9])
An equivalence relation ≡ on the set of states {1, 2 . . . ,N} is a
compatible aggregation if and only if any two equivalent states
have exactly the same outgoing transition probabilities towards any
of the blocks of the (induced) partition.
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Class 1 – Markov Chains

Proposition (Folklore, see Kemeny & Snell [9])
An equivalence relation ≡ on the set of states {1, 2 . . . ,N} is a
compatible aggregation for M if and only if any two equivalent
states have exactly the same outgoing transition probabilities
towards any of the blocks of the (induced) partition.

Note that if we denote by Ξ the associated 0-1 matrix, the
condition above could be equally written as

Ξ(Mi) = Ξ(Mj) whenever i, j ∈ {1, 2, . . . ,N} such that i ≡ j,

where Mk is the kth column of M .
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Class 1 – Markov Chains

More abstractly

Ξ(αv) = Ξ(αw) whenever v,w ∈ ZN
+ such that Ξ(v) = Ξ(w),

where αv = ∂vM (0, . . . , 0) =
{

Mi , if v = ei , (∂ei = ∂i)
(0, . . . , 0)T , otherwise.

Note that if we denote by Ξ the associated 0-1 matrix, the
condition above could be equally written as

Ξ(Mi) = Ξ(Mj) whenever i, j ∈ {1, 2, . . . ,N} such that i ≡ j,

where Mk is the kth column of M .
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Class 2 – Binary Tournaments

Parameter set
↼ – an orientation on a complete graph on N vertices (a finite set
of parameters)

R

P Sc

L Sp
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Class 2 – Binary Tournaments

Parameter set
↼ – an orientation on a complete graph on N vertices (a finite set
of parameters)

Iterated system

pi
n+1 = (pi

n)2 + 2
∑
i↼k

pk
n · pi

n = (T (p1
n , . . . , pN

n ))i ,

for i ∈ {1, 2, . . . ,N}
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Class 2 – Binary Tournaments

Proposition
An equivalence relation ≡ on {1, 2 . . . ,N} is a compatible
aggregation for the iterated system above if and only if

i ≡ j ≡ k whenever i ≡ k and i ↼ j ↼ k.
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Class 2 – Binary Tournaments

Proposition
An equivalence relation ≡ on {1, 2 . . . ,N} is a compatible
aggregation for the iterated system above if and only if

i ≡ j ≡ k whenever i ≡ k and i ↼ j ↼ k.

More abstractly

Ξ(αv) = Ξ(αw) whenever v,w ∈ ZN
+ such that Ξ(v) = Ξ(w),

where

αv = ∂vT (0, . . . , 0) =


2ei , if v = 2ei , (∂2ei = ∂ii)
2ei , if v = ei + ek and i ↼ k,
(0, . . . , 0)T , otherwise. (∂ei+ek = ∂ik)
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Class 2 v2 – 2nd order Chemistry

Parameter set
αv – 2× the vector of probabilities of getting a certain product in
a reaction represented by v, where v ∈ ZN

+ s.t. |v| = 2

Iterated system

pn+1 = T (pn),

where p = (p1, p2, . . . , pN ) and

T (p) =
∑

v∈ZN
+:|v|=2

1
v! ·αv · pv
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Class 2 v2 – 2nd order Chemistry

Proposition
An equivalence relation ≡ on {1, 2 . . . ,N} is a compatible
aggregation for the iterated system above if and only if

Ξ(αv) = Ξ(αw) whenever v,w ∈ ZN
+ such that Ξ(v) = Ξ(w).

Note that αv = ∂vT (0, . . . , 0).
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Discretisation and Modelling issues
I Ω — {1, 2, . . . ,N}
I T — dynamics on ∆N = M (Ω)
I R — size of a total population in simulation

I 1
R XR

N ⊂ ∆N — set of finite populations
I M ( 1

R XR
N ) = ∆C(N ,R) — set of probabilities over finite

populations

x
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w

1
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N
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Different models

A countable family of independent random variables{
Z k,i

α ,Y k,i
β : k ∈ N, i ∈ N,α ∈ T

( 1
RXR

N

)
,β ∈ 1

RXR
N

}
,

where

Z k,i
α ∼

(
1 2 . . . N
α1 α2 . . . αN

)
and Y k,i

β ∼
(

1 2 . . . N
β1 β2 . . . βN

)

1
RVk = F

( 1
RVk−1; Z k,1

T( 1
R Vk−1),Z

k,2
T( 1

R Vk−1), . . . ; Y k,1
1
R Vk−1

,Y k,2
1
R Vk−1

, . . .

)
,

for some F : 1
R XR

N × Ω∞ × Ω∞ → 1
R XR

N which is assumed to be
compatible with Ξπ × π∞ × π∞ (for any quotient map π : Ω→ Ω̃)
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Different models

Generational model

F2

( 1
Rv; i1, i2, . . . ; j1, j2, . . .

)
= 1

R (ei1 + ei2 + · · ·+ eiR)

One at a time reaction

F1

( 1
Rv; i1, i2, . . . ; j1, j2, . . .

)
= 1

R (v + ei1 − ej1)

Proposition
If Ξ is a compatible aggregation for T , then the Markov chains
induced by the modelling functions F1 (Vose [20]) or F2 (or other
compatible F) can be aggregated in the same way.
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Class 3 – A very general heuristic model

Parameter set
αv – 2× the vector of probabilities of getting a certain product in
a reaction represented by v, where v ∈ ZN

+ s.t. |v| = 2

Iterated system

pn+1 = T (pn),

where p = (p1, p2, . . . , pN ) and

T (p) =
∑

v∈ZN
+:|v|=2

1
v! ·αv · pv
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Class 3 – Compatible aggregations

Theorem
An equivalence relation ≡ on {1, 2 . . . ,N} is a compatible
aggregation for the iterated system above if and only if

Ξ(αv) = Ξ(αw) whenever v,w ∈ ZN
+ such that Ξ(v) = Ξ(w).

Note that αv = ∂vT (0, . . . , 0).
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Modulo 12 Game

x + y → (x +12 y) Ω = {0, 1, . . . , 11}
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An application to Kinetochore

Model by R. Henze, and B. Ibrahim
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kinetic differential equations, SIAM Journal on Applied Mathematics 57 (1997), no. 6, 1531–1556.

[20] Michael D. Vose, The simple genetic algorithm, Complex Adaptive Systems, MIT Press, Cambridge, MA,
1999. Foundations and theory, A Bradford Book. MR1713436 (2000h:65024)

24 / 25



A characterisation of compatible state space
aggregations

Mate Puljiz
University of Birmingham

joint work with
Chris Good, David Parker, and Jonathan E. Rowe

HieDy, ECAL 2015
York, 24th July 2015

25 / 25


	An introductory MC example
	Binary Tournaments
	2nd order Chemistry
	Discretisation and Modelling issues
	A very general heuristic model
	Applications
	End Matter

