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What are we studying?

» When can we simplify an iterated system
Tn+1 = f(x,), where f: RY — RN?
» E.g.

2
Tnt+1 = Ty,
2
Yn+l = Yp + 2ZnYn,

Zn+1 = Zn + Wp,

Wp+1 = 07

can be simplified to
Xn+1 = Xia
Yn+1 = Yn7

where X; = z; + y; and Y; = z; + w;.
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Why are we studying this?

v

Very general framework

v

Simplifying real-life models (model reduction)

v

Discovering underlying regularities of a model

v

Efficient usage of computational resources
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Our goal

» Identify a class of iterated systems of interest
» Interpret these as a parametrised set of models for artificial
chemistries

» Given one such model, characterise its compatible
aggregations in terms of the intrinsic parameters of the model
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Notation

» Aggregation — a partition of the set of variables
(sometimes the induced equivalence relation on {1,2,...,N})
» {{z,y}, {7, w}} above

» Can be encoded by a 0-1 column stochastic matrix

— |1 1.0 0
> E.g.__[O 0 1 J above as

(X, Yi)T == (@i, ¥i> %> U/i)T
» Compatible aggregation — an aggregation for which the coarse
grained description is well-defined
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Class 1 — Markov Chains

Parameter set
M — an N x N column stochastic matrix

Iterated system

where p = (p', p?,...,p")

Proposition (Folklore, see Kemeny & Snell [9])

An equivalence relation = on the set of states {1,2...,N} is a
compatible aggregation if and only if any two equivalent states
have exactly the same outgoing transition probabilities towards any
of the blocks of the (induced) partition.
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A picture
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Class 1 — Markov Chains

Proposition (Folklore, see Kemeny & Snell [9])

An equivalence relation = on the set of states {1,2...,N} is a
compatible aggregation for M if and only if any two equivalent
states have exactly the same outgoing transition probabilities
towards any of the blocks of the (induced) partition.

Note that if we denote by = the associated 0-1 matrix, the
condition above could be equally written as

E(M;) = =(M;)  whenever i,j€{1,2,...,N} such that i = j,

where M is the k™ column of M.
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Class 1 — Markov Chains

More abstractly

M;, if v=e;,
where =
(0,...,0)T, otherwise.

Note that if we denote by = the associated 0-1 matrix, the
condition above could be equally written as

=(M;) = =(M;)  whenever i,j€{1,2,...,N} such that i = j,

where M is the k™ column of M.
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Class 2 — Binary Tournaments

Parameter set
“— — an orientation on a complete graph on N vertices (a finite set

of parameters)
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Class 2 — Binary Tournaments

Parameter set
“— — an orientation on a complete graph on N vertices (a finite set
of parameters)
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Class 2 — Binary Tournaments

Parameter set
“— — an orientation on a complete graph on N vertices (a finite set

of parameters)

Iterated system

Phyr = ()2 42> pkpl = (T(pp,---,00))is

i—k

for i € {1,2,...,N}
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Class 2 — Binary Tournaments

Proposition
An equivalence relation = on {1,2..., N} is a compatible
aggregation for the iterated system above if and only if

i=j=k whenever i=kandi+—j—k.
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A picture
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Class 2 — Binary Tournaments

Proposition
An equivalence relation = on {1,2..., N} is a compatible
aggregation for the iterated system above if and only if

i=j=k whenever i=kandi+—j+—k.

More abstractly

where
2e;, if v=_2e;,

=4q2e;, ifv=e;+ e, and i — k,
(0,...,0)T, otherwise.
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Class 2 v2 — 2" order Chemistry

Parameter set
Qy — 2X the vector of probabilities of getting a certain product in
a reaction represented by v, where v € Z¥ s.t. |v| =2

Iterated system

Pnt1 = T(pn),
where p = (p', p?,...,p") and

T(p): Z a'av’pv

vEZ_’I\_’:|v\:2
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Class 2 v2 — 2" order Chemistry

Proposition
An equivalence relation = on {1,2..., N} is a compatible
aggregation for the iterated system above if and only if

Note that
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Discretisation and Modelling issues
» O —{1,2,...,N}
» T — dynamics on Ay = M(Q)
» R — size of a total population in simulation
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Discretisation and Modelling issues
» O —{1,2,...,N}
» T — dynamics on Ay = M(Q)
» R — size of a total population in simulation
> %Xﬁ C Ay — set of finite populations
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Discretisation and Modelling issues
QO—{1,2,...,N}
T — dynamics on Ay = M(Q)

» R — size of a total population in simulation

v

v

> %Xﬁ C Ay — set of finite populations
» M(£XE) = A (n,r) — set of probabilities over finite

populations
4 Nx4
[ ]
0 I2x4
[ ]
[ ]
e 1x2 2x2
* o ° 2x4 ®

o
/QT'—’. e "I % {1,2,N, N}
L]
wd N

°
<4 (1,2, N, N} 1x2, 2x2
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Different models

A countable family of independent random variables

. y 1 1
{Zﬁﬂ, Yy'ikeNieNaeT (RXz@) B € RXJI\?}’

where
; 1 2 ... N ki 1 2 ... N
VAN and Y, ~
@ <a1 az ... aN) p (51 B2 ... 51\1)
lV _F V gkl k2 Yy k,2
R k — R k— 1; T(Evk—l)’ T(%Vk,l)r”’ %Vk—ﬂ %Vk—lwu

for some F: £ X x Q% x 0 — £ Xf which is assumed to be
compatible W|th Ep X TP X 7> (for any quotient map 7: Q — Q)
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Different models

Generational model

1 . 1
F2(R'l’§117127---§]17j2a~~>:R(ei1+ei2+"'+ei3)

One at a time reaction

(v + €5 — 671)

==

1
i =v4,%,...;0,52,... | =
1 (R 1, %2 J1s 72 )
Proposition

If = is a compatible aggregation for T', then the Markov chains

induced by the modelling functions F; (Vose [20]) or F5 (or other
compatible F') can be aggregated in the same way.
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Class 3 — A very general heuristic model

Parameter set
Qy — 2X the vector of probabilities of getting a certain product in
a reaction represented by v, where v € Z¥ s.t. |v| =2

Iterated system

Pnt1 = T(pn),
where p = (p', p?,...,p") and

T(p): Z a'av’pv

vEZ_’I\_’:|v\:2
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Class 3 — A very general heuristic model

Parameter set
o, — | ]! X the vector of probabilities of getting a certain product
in a reaction represented by v, where v € Zf —

Iterated system

Pnt1 = T(pn),
where p = (p', p?,...,p") and
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Class 3 — Compatible aggregations

Theorem
An equivalence relation = on {1,2..., N} is a compatible
aggregation for the iterated system above if and only if

Note that
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Modulo 12 Game

4y — (x+129)

20
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An application to Kinetochore

Model by R. Henze, and B. lbrahim

(‘Proml'}}

{{'KinU'}
K

{'Activ', 'Inhib’, 'Promot’,

{{'KinU', KinA') {{'KinU'),
{'Activ', Inhib', Promot’, A', 'PromI'} } {'KinA', 'Activ’, Inhib’, 'Promot’, PromA’, PromI'} }

{{'KinU', 'KinA', 'Activ', 'Inhib’, 'Promot’, 'PromA’, PromlI'} }
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